GT AI OS Community v2.0.33 - Add NVIDIA NIM and Nemotron agents

- Updated python_coding_microproject.csv to use NVIDIA NIM Kimi K2
- Updated kali_linux_shell_simulator.csv to use NVIDIA NIM Kimi K2
  - Made more general-purpose (flexible targets, expanded tools)
- Added nemotron-mini-agent.csv for fast local inference via Ollama
- Added nemotron-agent.csv for advanced reasoning via Ollama
- Added wiki page: Projects for NVIDIA NIMs and Nemotron
This commit is contained in:
HackWeasel
2025-12-12 17:47:14 -05:00
commit 310491a557
750 changed files with 232701 additions and 0 deletions

76
docker-compose.x86.yml Normal file
View File

@@ -0,0 +1,76 @@
# Docker Compose x86_64 Overlay
# Platform-specific overrides for x86_64 Linux (Ubuntu)
#
# Usage: docker compose -f docker-compose.yml -f docker-compose.x86.yml up -d
services:
# Control Panel Backend - x86 host.docker.internal
control-panel-backend:
extra_hosts:
- "host.docker.internal:host-gateway"
- "ollama-host:host-gateway"
environment:
ENVIRONMENT: production
DEBUG: "false"
# Tenant Backend - x86 host.docker.internal
tenant-backend:
extra_hosts:
- "host.docker.internal:host-gateway"
- "ollama-host:host-gateway"
environment:
ENVIRONMENT: production
DEBUG: "false"
# Resource Cluster - x86 host.docker.internal
resource-cluster:
extra_hosts:
- "host.docker.internal:host-gateway"
- "ollama-host:host-gateway"
environment:
ENVIRONMENT: production
DEBUG: "false"
# Tenant PostgreSQL Primary - x86 Performance Tuning
tenant-postgres-primary:
environment:
# x86_64 Performance settings - optimized for typical server specs
POSTGRES_SHARED_BUFFERS: 2GB
POSTGRES_EFFECTIVE_CACHE_SIZE: 6GB
POSTGRES_MAINTENANCE_WORK_MEM: 512MB
POSTGRES_MAX_CONNECTIONS: 300
POSTGRES_WORK_MEM: 128MB
deploy:
resources:
limits:
memory: 8G
reservations:
memory: 4G
labels:
- "gt2.platform=x86_64"
# VLLM Embeddings Service - x86_64 Optimized
vllm-embeddings:
platform: linux/amd64
build:
context: .
dockerfile: .deployment/docker/Dockerfile.vllm-x86
environment:
- MODEL_NAME=BAAI/bge-m3
# x86_64 optimization - adjust based on your CPU
- OMP_NUM_THREADS=8
- MKL_NUM_THREADS=8
- PYTORCH_NUM_THREADS=8
- OPENBLAS_NUM_THREADS=8
# x86_64-specific optimizations
- GT2_PLATFORM=x86_64
- MALLOC_ARENA_MAX=4
- USE_ONNX_RUNTIME=true
deploy:
resources:
limits:
memory: 16G
reservations:
memory: 8G
labels:
- "gt2.platform=x86_64"