GT AI OS Community Edition v2.0.33
Security hardening release addressing CodeQL and Dependabot alerts: - Fix stack trace exposure in error responses - Add SSRF protection with DNS resolution checking - Implement proper URL hostname validation (replaces substring matching) - Add centralized path sanitization to prevent path traversal - Fix ReDoS vulnerability in email validation regex - Improve HTML sanitization in validation utilities - Fix capability wildcard matching in auth utilities - Update glob dependency to address CVE - Add CodeQL suppression comments for verified false positives 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
@@ -0,0 +1,684 @@
|
||||
"use client";
|
||||
|
||||
import { useState, useEffect } from 'react';
|
||||
import {
|
||||
Dialog,
|
||||
DialogContent,
|
||||
DialogDescription,
|
||||
DialogFooter,
|
||||
DialogHeader,
|
||||
DialogTitle,
|
||||
} from '@/components/ui/dialog';
|
||||
import { Button } from '@/components/ui/button';
|
||||
import { Input } from '@/components/ui/input';
|
||||
import { Label } from '@/components/ui/label';
|
||||
import { Textarea } from '@/components/ui/textarea';
|
||||
import {
|
||||
Select,
|
||||
SelectContent,
|
||||
SelectItem,
|
||||
SelectTrigger,
|
||||
SelectValue,
|
||||
} from '@/components/ui/select';
|
||||
import { Card, CardContent, CardDescription, CardHeader, CardTitle } from '@/components/ui/card';
|
||||
import { Separator } from '@/components/ui/separator';
|
||||
import { useToast } from '@/components/ui/use-toast';
|
||||
import {
|
||||
Cpu,
|
||||
TestTube,
|
||||
RefreshCw,
|
||||
CheckCircle,
|
||||
AlertCircle,
|
||||
AlertTriangle,
|
||||
ExternalLink,
|
||||
Users,
|
||||
Info
|
||||
} from 'lucide-react';
|
||||
import { Alert, AlertDescription, AlertTitle } from '@/components/ui/alert';
|
||||
|
||||
interface CustomEndpoint {
|
||||
provider: string;
|
||||
name: string;
|
||||
endpoint: string;
|
||||
enabled: boolean;
|
||||
health_status: 'healthy' | 'unhealthy' | 'testing' | 'unknown';
|
||||
description: string;
|
||||
is_external: boolean;
|
||||
requires_api_key: boolean;
|
||||
last_test?: string;
|
||||
is_custom?: boolean;
|
||||
model_type?: 'llm' | 'embedding' | 'both';
|
||||
}
|
||||
|
||||
interface AddModelDialogProps {
|
||||
open: boolean;
|
||||
onOpenChange: (open: boolean) => void;
|
||||
onModelAdded?: () => void;
|
||||
}
|
||||
|
||||
export default function AddModelDialog({ open, onOpenChange, onModelAdded }: AddModelDialogProps) {
|
||||
const [testing, setTesting] = useState(false);
|
||||
const [testResult, setTestResult] = useState<{
|
||||
success: boolean;
|
||||
status?: 'healthy' | 'degraded' | 'unhealthy';
|
||||
message: string;
|
||||
latency_ms?: number;
|
||||
error_type?: string;
|
||||
} | null>(null);
|
||||
const [customEndpoints, setCustomEndpoints] = useState<CustomEndpoint[]>([]);
|
||||
|
||||
const [formData, setFormData] = useState({
|
||||
model_id: '',
|
||||
name: '',
|
||||
provider: '', // No default provider
|
||||
model_type: '',
|
||||
endpoint: '', // No default endpoint
|
||||
description: '',
|
||||
context_window: '',
|
||||
max_tokens: '',
|
||||
dimensions: '', // For embedding models
|
||||
});
|
||||
|
||||
const { toast } = useToast();
|
||||
|
||||
// Load custom endpoints from localStorage
|
||||
useEffect(() => {
|
||||
const loadCustomEndpoints = () => {
|
||||
try {
|
||||
const stored = localStorage.getItem('custom_endpoints');
|
||||
console.log('Raw stored endpoints from localStorage:', stored);
|
||||
if (stored) {
|
||||
const parsed = JSON.parse(stored);
|
||||
console.log('Parsed custom endpoints:', parsed);
|
||||
setCustomEndpoints(parsed);
|
||||
} else {
|
||||
console.log('No custom endpoints found in localStorage');
|
||||
}
|
||||
} catch (error) {
|
||||
console.error('Failed to load custom endpoints:', error);
|
||||
}
|
||||
};
|
||||
|
||||
if (open) {
|
||||
loadCustomEndpoints();
|
||||
}
|
||||
}, [open]);
|
||||
|
||||
const handleProviderChange = (providerId: string) => {
|
||||
console.log('Provider changed to:', providerId);
|
||||
console.log('Available custom endpoints:', customEndpoints);
|
||||
|
||||
// Check if this is a custom endpoint
|
||||
const customEndpoint = customEndpoints.find(ep => ep.provider === providerId);
|
||||
console.log('Found custom endpoint:', customEndpoint);
|
||||
|
||||
if (customEndpoint) {
|
||||
// Selected a configured endpoint - keep the endpoint ID as provider for Select consistency
|
||||
console.log('Setting endpoint URL to:', customEndpoint.endpoint);
|
||||
setFormData(prev => ({
|
||||
...prev,
|
||||
provider: providerId, // Use the endpoint ID to maintain Select consistency
|
||||
endpoint: customEndpoint.endpoint, // Auto-fill the configured URL
|
||||
model_type: customEndpoint.model_type || prev.model_type
|
||||
}));
|
||||
} else {
|
||||
// Selected a default provider
|
||||
setFormData(prev => {
|
||||
const updated = { ...prev, provider: providerId };
|
||||
|
||||
// Auto-populate default endpoints
|
||||
switch (providerId) {
|
||||
case 'nvidia':
|
||||
updated.endpoint = 'https://integrate.api.nvidia.com/v1/chat/completions';
|
||||
break;
|
||||
case 'groq':
|
||||
updated.endpoint = 'https://api.groq.com/openai/v1/chat/completions';
|
||||
break;
|
||||
case 'ollama-dgx-x86':
|
||||
updated.endpoint = 'http://ollama-host:11434/v1/chat/completions';
|
||||
break;
|
||||
case 'ollama-macos':
|
||||
updated.endpoint = 'http://host.docker.internal:11434/v1/chat/completions';
|
||||
break;
|
||||
case 'local':
|
||||
updated.endpoint = 'http://localhost:8000/v1/chat/completions';
|
||||
break;
|
||||
default:
|
||||
updated.endpoint = '';
|
||||
}
|
||||
|
||||
return updated;
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
const handleInputChange = (field: string, value: any) => {
|
||||
setFormData(prev => ({ ...prev, [field]: value }));
|
||||
};
|
||||
|
||||
|
||||
|
||||
const handleTestEndpoint = async () => {
|
||||
if (!formData.endpoint) {
|
||||
toast({
|
||||
title: "Missing Endpoint",
|
||||
description: "Please enter an endpoint URL to test",
|
||||
variant: "destructive",
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
setTesting(true);
|
||||
setTestResult(null);
|
||||
|
||||
try {
|
||||
// Test endpoint connectivity via backend API
|
||||
const response = await fetch('/api/v1/models/test-endpoint', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Authorization': `Bearer ${localStorage.getItem('authToken')}`,
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({
|
||||
endpoint: formData.endpoint,
|
||||
provider: formData.provider
|
||||
})
|
||||
});
|
||||
|
||||
const result = await response.json();
|
||||
|
||||
// Build message based on status
|
||||
let message = result.error || "Endpoint is responding correctly";
|
||||
if (result.status === 'degraded' && !result.error) {
|
||||
message = "Endpoint responding but with high latency";
|
||||
}
|
||||
|
||||
setTestResult({
|
||||
success: result.healthy || false,
|
||||
status: result.status || (result.healthy ? 'healthy' : 'unhealthy'),
|
||||
message: message,
|
||||
latency_ms: result.latency_ms,
|
||||
error_type: result.error_type
|
||||
});
|
||||
} catch (error) {
|
||||
setTestResult({
|
||||
success: false,
|
||||
status: 'unhealthy',
|
||||
message: "Connection test failed",
|
||||
error_type: 'connection_error'
|
||||
});
|
||||
} finally {
|
||||
setTesting(false);
|
||||
}
|
||||
};
|
||||
|
||||
const handleSubmit = async () => {
|
||||
try {
|
||||
// Prepare submission data - resolve custom endpoint provider if needed
|
||||
const submissionData: Record<string, any> = { ...formData };
|
||||
|
||||
// Check if the provider is actually a custom endpoint ID
|
||||
const customEndpoint = customEndpoints.find(ep => ep.provider === formData.provider);
|
||||
if (customEndpoint) {
|
||||
// Use the actual provider name from the custom endpoint
|
||||
submissionData.provider = customEndpoint.provider;
|
||||
}
|
||||
|
||||
// Set default status (pricing is now managed on the Billing page)
|
||||
submissionData.status = {
|
||||
is_active: true,
|
||||
is_compound: false
|
||||
};
|
||||
|
||||
// Set default pricing (managed on Billing page)
|
||||
submissionData.cost_per_million_input = 0;
|
||||
submissionData.cost_per_million_output = 0;
|
||||
|
||||
const apiUrl = '/api/v1/models/';
|
||||
console.log('Making API request to:', apiUrl);
|
||||
console.log('Submission data:', submissionData);
|
||||
|
||||
const response = await fetch(apiUrl, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Accept': 'application/json'
|
||||
},
|
||||
body: JSON.stringify(submissionData)
|
||||
});
|
||||
|
||||
console.log('Response status:', response.status);
|
||||
console.log('Response headers:', Object.fromEntries(response.headers.entries()));
|
||||
|
||||
if (response.ok) {
|
||||
const result = await response.json();
|
||||
console.log('Success response:', result);
|
||||
|
||||
toast({
|
||||
title: "Model Added",
|
||||
description: `Successfully added ${formData.name} to the model registry`,
|
||||
});
|
||||
|
||||
// Reset form and close dialog
|
||||
setFormData({
|
||||
model_id: '',
|
||||
name: '',
|
||||
provider: '', // No default provider
|
||||
model_type: '',
|
||||
endpoint: '', // No default endpoint
|
||||
description: '',
|
||||
context_window: '',
|
||||
max_tokens: '',
|
||||
dimensions: '',
|
||||
});
|
||||
setTestResult(null);
|
||||
onOpenChange(false);
|
||||
|
||||
// Notify parent to refresh data
|
||||
if (onModelAdded) {
|
||||
onModelAdded();
|
||||
}
|
||||
} else {
|
||||
const errorData = await response.text();
|
||||
console.error('API error response:', errorData);
|
||||
|
||||
toast({
|
||||
title: "Failed to Add Model",
|
||||
description: `Server returned ${response.status}: ${errorData.substring(0, 100)}`,
|
||||
variant: "destructive",
|
||||
});
|
||||
}
|
||||
} catch (error) {
|
||||
console.error('Network error:', error);
|
||||
|
||||
toast({
|
||||
title: "Network Error",
|
||||
description: error instanceof Error ? error.message : "Could not connect to server",
|
||||
variant: "destructive",
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
return (
|
||||
<Dialog open={open} onOpenChange={onOpenChange}>
|
||||
<DialogContent className="max-w-2xl max-h-[90vh] overflow-y-auto">
|
||||
<DialogHeader>
|
||||
<DialogTitle className="flex items-center gap-2">
|
||||
<Cpu className="w-5 h-5" />
|
||||
Add New Model
|
||||
</DialogTitle>
|
||||
<DialogDescription>
|
||||
Add a new AI model to the GT 2.0 registry. This will make it available across all clusters.
|
||||
</DialogDescription>
|
||||
</DialogHeader>
|
||||
|
||||
<div className="space-y-6">
|
||||
{/* Basic Information */}
|
||||
<div className="space-y-4">
|
||||
<h3 className="text-lg font-medium">Basic Information</h3>
|
||||
|
||||
<div className="grid grid-cols-2 gap-4">
|
||||
<div>
|
||||
<Label htmlFor="model_id">Model ID *</Label>
|
||||
<Input
|
||||
id="model_id"
|
||||
value={formData.model_id}
|
||||
onChange={(e) => handleInputChange('model_id', e.target.value)}
|
||||
placeholder="llama-3.3-70b-versatile"
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div>
|
||||
<Label htmlFor="name">Display Name *</Label>
|
||||
<Input
|
||||
id="name"
|
||||
value={formData.name}
|
||||
onChange={(e) => handleInputChange('name', e.target.value)}
|
||||
placeholder="Llama 3.3 70B Versatile"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div className="grid grid-cols-2 gap-4">
|
||||
<div>
|
||||
<Label htmlFor="provider">Provider *</Label>
|
||||
<Select value={formData.provider} onValueChange={(value) => handleProviderChange(value)}>
|
||||
<SelectTrigger>
|
||||
<SelectValue placeholder="Select provider/endpoint" />
|
||||
</SelectTrigger>
|
||||
<SelectContent>
|
||||
{/* Default providers */}
|
||||
<SelectItem key="nvidia" value="nvidia">NVIDIA NIM (build.nvidia.com)</SelectItem>
|
||||
<SelectItem key="ollama-dgx-x86" value="ollama-dgx-x86">Local Ollama (Ubuntu x86 / DGX ARM)</SelectItem>
|
||||
<SelectItem key="ollama-macos" value="ollama-macos">Local Ollama (macOS Apple Silicon)</SelectItem>
|
||||
<SelectItem key="groq" value="groq">Groq (api.groq.com)</SelectItem>
|
||||
<SelectItem key="local" value="local">Custom Endpoint</SelectItem>
|
||||
|
||||
{/* Custom configured endpoints */}
|
||||
{customEndpoints.length > 0 && (
|
||||
<>
|
||||
<SelectItem key="separator" value="separator" disabled className="text-xs text-muted-foreground font-medium px-2 py-1">
|
||||
── Configured Endpoints ──
|
||||
</SelectItem>
|
||||
{customEndpoints.map((endpoint) => (
|
||||
<SelectItem key={endpoint.provider} value={endpoint.provider}>
|
||||
{endpoint.name} ({endpoint.provider})
|
||||
{endpoint.model_type && (
|
||||
<span className="ml-2 text-xs text-muted-foreground">
|
||||
[{endpoint.model_type}]
|
||||
</span>
|
||||
)}
|
||||
</SelectItem>
|
||||
))}
|
||||
</>
|
||||
)}
|
||||
</SelectContent>
|
||||
</Select>
|
||||
</div>
|
||||
|
||||
<div>
|
||||
<Label htmlFor="model_type">Model Type *</Label>
|
||||
<Select value={formData.model_type} onValueChange={(value) => handleInputChange('model_type', value)}>
|
||||
<SelectTrigger>
|
||||
<SelectValue placeholder="Select type" />
|
||||
</SelectTrigger>
|
||||
<SelectContent>
|
||||
<SelectItem value="llm">Language Model (LLM)</SelectItem>
|
||||
<SelectItem value="embedding">Embedding Model</SelectItem>
|
||||
</SelectContent>
|
||||
</Select>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
<div>
|
||||
<Label htmlFor="endpoint">Endpoint URL *</Label>
|
||||
<div className="flex gap-2">
|
||||
<Input
|
||||
id="endpoint"
|
||||
value={formData.endpoint}
|
||||
onChange={(e) => handleInputChange('endpoint', e.target.value)}
|
||||
placeholder={
|
||||
formData.provider === 'groq'
|
||||
? "https://api.groq.com/openai/v1/chat/completions"
|
||||
: "http://localhost:8000/v1/chat/completions"
|
||||
}
|
||||
className={formData.provider === 'local' ? "border-green-200 bg-green-50" : "border-purple-200 bg-purple-50"}
|
||||
/>
|
||||
<Button
|
||||
type="button"
|
||||
variant="outline"
|
||||
onClick={handleTestEndpoint}
|
||||
disabled={!formData.endpoint || testing}
|
||||
>
|
||||
{testing ? (
|
||||
<RefreshCw className="w-4 h-4 animate-spin" />
|
||||
) : (
|
||||
<TestTube className="w-4 h-4" />
|
||||
)}
|
||||
</Button>
|
||||
</div>
|
||||
{formData.provider === 'groq' && (
|
||||
<div className="mt-2 p-3 rounded-md bg-orange-50 border border-orange-200">
|
||||
<p className="text-sm font-medium text-orange-800 mb-2">Groq Setup Steps:</p>
|
||||
<ol className="text-sm text-orange-700 space-y-2 list-decimal list-inside">
|
||||
<li>
|
||||
<a
|
||||
href="https://console.groq.com"
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
className="underline hover:text-orange-900"
|
||||
>
|
||||
Create a Groq account
|
||||
</a>{' '}
|
||||
and{' '}
|
||||
<a
|
||||
href="https://console.groq.com/keys"
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
className="underline hover:text-orange-900"
|
||||
>
|
||||
generate an API key
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
Add your API key on the{' '}
|
||||
<a href="/dashboard/api-keys" className="underline hover:text-orange-900">
|
||||
API Keys page
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
Configure your model in the Control Panel:
|
||||
<ul className="mt-1 ml-4 space-y-1 list-disc">
|
||||
<li>
|
||||
<strong>Model ID:</strong> Use the exact Groq model name (e.g.,{' '}
|
||||
<code className="bg-orange-100 px-1 rounded">llama-3.3-70b-versatile</code>)
|
||||
</li>
|
||||
<li>
|
||||
<strong>Display Name:</strong> A friendly name (e.g., "Llama 3.3 70B")
|
||||
</li>
|
||||
<li>
|
||||
<strong>Model Type:</strong> Select <code className="bg-orange-100 px-1 rounded">LLM</code> for chat models (most common for AI agents)
|
||||
</li>
|
||||
<li>
|
||||
<strong>Context Window:</strong> Check{' '}
|
||||
<a
|
||||
href="https://console.groq.com/docs/models"
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
className="underline hover:text-orange-900"
|
||||
>
|
||||
Groq docs
|
||||
</a>{' '}
|
||||
(e.g., 128K for Llama 3.3)
|
||||
</li>
|
||||
<li>
|
||||
<strong>Max Tokens:</strong> Typically 8192; check model docs
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
</ol>
|
||||
</div>
|
||||
)}
|
||||
{formData.provider === 'nvidia' && (
|
||||
<div className="mt-2 p-3 rounded-md bg-green-50 border border-green-200">
|
||||
<p className="text-sm font-medium text-green-800 mb-2">NVIDIA NIM Setup Steps:</p>
|
||||
<ol className="text-sm text-green-700 space-y-2 list-decimal list-inside">
|
||||
<li>
|
||||
<a
|
||||
href="https://build.nvidia.com"
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
className="underline hover:text-green-900"
|
||||
>
|
||||
Create an NVIDIA account
|
||||
</a>{' '}
|
||||
and generate an API key
|
||||
</li>
|
||||
<li>
|
||||
Add your API key on the{' '}
|
||||
<a href="/dashboard/api-keys" className="underline hover:text-green-900">
|
||||
API Keys page
|
||||
</a>
|
||||
</li>
|
||||
<li>
|
||||
Configure your model in the Control Panel:
|
||||
<ul className="mt-1 ml-4 space-y-1 list-disc">
|
||||
<li>
|
||||
<strong>Model ID:</strong> Use the NVIDIA model name (e.g.,{' '}
|
||||
<code className="bg-green-100 px-1 rounded">meta/llama-3.1-70b-instruct</code>)
|
||||
</li>
|
||||
<li>
|
||||
<strong>Display Name:</strong> A friendly name (e.g., "Llama 3.1 70B")
|
||||
</li>
|
||||
<li>
|
||||
<strong>Model Type:</strong> Select <code className="bg-green-100 px-1 rounded">LLM</code> for chat models (most common for AI agents)
|
||||
</li>
|
||||
<li>
|
||||
<strong>Context Window:</strong> Check the{' '}
|
||||
<a
|
||||
href="https://build.nvidia.com/models"
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
className="underline hover:text-green-900"
|
||||
>
|
||||
model page
|
||||
</a>{' '}
|
||||
(e.g., 128K for Llama 3.1)
|
||||
</li>
|
||||
<li>
|
||||
<strong>Max Tokens:</strong> Typically 4096-8192; check model docs
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
</ol>
|
||||
</div>
|
||||
)}
|
||||
{formData.provider === 'local' && (
|
||||
<p className="text-sm text-gray-600 mt-1">
|
||||
Set this to any OpenAI Compatible API endpoint that doesn't require API authentication.
|
||||
</p>
|
||||
)}
|
||||
{(formData.provider === 'ollama-dgx-x86' || formData.provider === 'ollama-macos') && (
|
||||
<div className="mt-2 p-3 rounded-md bg-blue-50 border border-blue-200">
|
||||
<p className="text-sm font-medium text-blue-800 mb-2">Ollama Setup Steps:</p>
|
||||
<ol className="text-sm text-blue-700 space-y-2 list-decimal list-inside">
|
||||
<li>
|
||||
<a
|
||||
href="https://ollama.com/download"
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
className="underline hover:text-blue-900"
|
||||
>
|
||||
Download and install
|
||||
</a>{' '}
|
||||
Ollama
|
||||
</li>
|
||||
<li>
|
||||
Select and download your{' '}
|
||||
<a
|
||||
href="https://ollama.com/library"
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
className="underline hover:text-blue-900"
|
||||
>
|
||||
Model
|
||||
</a>{' '}
|
||||
(run: <code className="bg-blue-100 px-1 rounded">ollama pull model-name</code>)
|
||||
</li>
|
||||
<li>
|
||||
Configure your model in the Control Panel:
|
||||
<ul className="mt-1 ml-4 space-y-1 list-disc">
|
||||
<li><strong>Model ID:</strong> Use the exact Ollama name with size tag (e.g., <code className="bg-blue-100 px-1 rounded">llama3.2:3b</code>, <code className="bg-blue-100 px-1 rounded">mistral:7b</code>)</li>
|
||||
<li><strong>Display Name:</strong> A friendly name (e.g., "Llama 3.2 3B")</li>
|
||||
<li><strong>Model Type:</strong> Select <code className="bg-blue-100 px-1 rounded">LLM</code> for chat models (most common for AI agents)</li>
|
||||
<li><strong>Context Window:</strong> Find on the model's Ollama page (e.g., 128K for Llama 3.2)</li>
|
||||
<li><strong>Max Tokens:</strong> Typically 2048-4096 for responses; check model docs</li>
|
||||
</ul>
|
||||
</li>
|
||||
</ol>
|
||||
</div>
|
||||
)}
|
||||
|
||||
{testResult && (
|
||||
<div className={`flex items-center gap-2 mt-2 p-2 rounded-md text-sm ${
|
||||
testResult.status === 'healthy' ? 'bg-green-50 text-green-700 border border-green-200' :
|
||||
testResult.status === 'degraded' ? 'bg-yellow-50 text-yellow-700 border border-yellow-200' :
|
||||
'bg-red-50 text-red-700 border border-red-200'
|
||||
}`}>
|
||||
{testResult.status === 'healthy' && <CheckCircle className="w-4 h-4 flex-shrink-0" />}
|
||||
{testResult.status === 'degraded' && <AlertTriangle className="w-4 h-4 flex-shrink-0" />}
|
||||
{testResult.status === 'unhealthy' && <AlertCircle className="w-4 h-4 flex-shrink-0" />}
|
||||
<div className="flex-1">
|
||||
<span>{testResult.message}</span>
|
||||
{testResult.latency_ms && (
|
||||
<span className="ml-2 text-xs opacity-75">({testResult.latency_ms.toFixed(0)}ms)</span>
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
|
||||
<div>
|
||||
<Label htmlFor="description">Description</Label>
|
||||
<Textarea
|
||||
id="description"
|
||||
value={formData.description}
|
||||
onChange={(e) => handleInputChange('description', e.target.value)}
|
||||
placeholder="Brief description of the model..."
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<Separator />
|
||||
|
||||
{/* Technical Specifications */}
|
||||
<div className="space-y-4">
|
||||
<h3 className="text-lg font-medium">Technical Specifications</h3>
|
||||
|
||||
<div className="grid grid-cols-2 gap-4">
|
||||
<div>
|
||||
<Label htmlFor="context_window">Context Window</Label>
|
||||
<Input
|
||||
id="context_window"
|
||||
type="number"
|
||||
value={formData.context_window}
|
||||
onChange={(e) => handleInputChange('context_window', e.target.value)}
|
||||
placeholder="128000"
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div>
|
||||
<Label htmlFor="max_tokens">Max Output Tokens</Label>
|
||||
<Input
|
||||
id="max_tokens"
|
||||
type="number"
|
||||
value={formData.max_tokens}
|
||||
onChange={(e) => handleInputChange('max_tokens', e.target.value)}
|
||||
placeholder="32768"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{formData.model_type === 'embedding' && (
|
||||
<div>
|
||||
<Label htmlFor="dimensions">Embedding Dimensions</Label>
|
||||
<Input
|
||||
id="dimensions"
|
||||
type="number"
|
||||
value={formData.dimensions}
|
||||
onChange={(e) => handleInputChange('dimensions', e.target.value)}
|
||||
placeholder="1024"
|
||||
/>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
|
||||
<Separator />
|
||||
|
||||
{/* Tenant Access Info */}
|
||||
<Alert>
|
||||
<Users className="h-4 w-4" />
|
||||
<AlertTitle>Automatic Tenant Access</AlertTitle>
|
||||
<AlertDescription>
|
||||
This model will be automatically assigned to all tenants with default rate limits (1000 requests/minute).
|
||||
You can customize per-tenant rate limits after creation via the Edit Model dialog.
|
||||
</AlertDescription>
|
||||
</Alert>
|
||||
</div>
|
||||
|
||||
<DialogFooter>
|
||||
<div className="flex gap-2">
|
||||
<Button variant="outline" onClick={() => onOpenChange(false)}>
|
||||
Cancel
|
||||
</Button>
|
||||
<Button onClick={handleSubmit}>
|
||||
Add Model
|
||||
</Button>
|
||||
</div>
|
||||
</DialogFooter>
|
||||
</DialogContent>
|
||||
</Dialog>
|
||||
);
|
||||
}
|
||||
Reference in New Issue
Block a user