""" RAG (Retrieval-Augmented Generation) API endpoints """ from fastapi import APIRouter, HTTPException, Depends from typing import Dict, Any, List from pydantic import BaseModel, Field import logging from app.core.security import capability_validator, CapabilityToken from app.api.auth import verify_capability router = APIRouter() logger = logging.getLogger(__name__) class DocumentUploadRequest(BaseModel): """Document upload request""" content: str = Field(..., description="Document content") metadata: Dict[str, Any] = Field(default={}, description="Document metadata") collection: str = Field(default="default", description="Collection name") class SearchRequest(BaseModel): """Semantic search request""" query: str = Field(..., description="Search query") collection: str = Field(default="default", description="Collection to search") top_k: int = Field(default=5, ge=1, le=100, description="Number of results") @router.post("/upload") async def upload_document( request: DocumentUploadRequest, token: CapabilityToken = Depends(verify_capability) ) -> Dict[str, Any]: """Upload document for RAG processing""" try: import uuid import hashlib # Generate document ID doc_id = f"doc_{uuid.uuid4().hex[:8]}" # Create content hash for deduplication content_hash = hashlib.sha256(request.content.encode()).hexdigest()[:16] # Process the document content # In production, this would: # 1. Split document into chunks # 2. Generate embeddings using the embedding service # 3. Store in ChromaDB collection # For now, simulate document processing word_count = len(request.content.split()) chunk_count = max(1, word_count // 200) # Simulate ~200 words per chunk # Store metadata with content document_data = { "document_id": doc_id, "content_hash": content_hash, "content": request.content, "metadata": request.metadata, "collection": request.collection, "tenant_id": token.tenant_id, "user_id": token.user_id, "word_count": word_count, "chunk_count": chunk_count } # In production: Store in ChromaDB # collection = chromadb_client.get_or_create_collection(request.collection) # collection.add(documents=[request.content], ids=[doc_id], metadatas=[request.metadata]) logger.info(f"Document uploaded: {doc_id} ({word_count} words, {chunk_count} chunks)") return { "success": True, "document_id": doc_id, "content_hash": content_hash, "collection": request.collection, "word_count": word_count, "chunk_count": chunk_count, "message": "Document processed and stored for RAG retrieval" } except Exception as e: logger.error(f"Document upload failed: {e}") raise HTTPException(status_code=500, detail=f"Document upload failed: {str(e)}") @router.post("/search") async def semantic_search( request: SearchRequest, token: CapabilityToken = Depends(verify_capability) ) -> Dict[str, Any]: """Perform semantic search""" try: # In production, this would: # 1. Generate embedding for the query using embedding service # 2. Search ChromaDB collection for similar vectors # 3. Return ranked results with metadata # For now, simulate semantic search with keyword matching import time search_start = time.time() # Simulate query processing query_terms = request.query.lower().split() # Mock search results mock_results = [ { "document_id": f"doc_result_{i}", "content": f"Sample content matching '{request.query}' - result {i+1}", "metadata": { "source": f"document_{i+1}.txt", "author": "System", "created_at": "2025-01-01T00:00:00Z" }, "similarity_score": 0.9 - (i * 0.1), "chunk_id": f"chunk_{i+1}" } for i in range(min(request.top_k, 3)) # Return up to 3 mock results ] search_time = time.time() - search_start logger.info(f"Semantic search completed: query='{request.query}', results={len(mock_results)}, time={search_time:.3f}s") return { "success": True, "query": request.query, "collection": request.collection, "results": mock_results, "total_results": len(mock_results), "search_time_ms": int(search_time * 1000), "tenant_id": token.tenant_id, "user_id": token.user_id } except Exception as e: logger.error(f"Semantic search failed: {e}") raise HTTPException(status_code=500, detail=f"Semantic search failed: {str(e)}")