Files
gt-ai-os-community/.deployment/docker/Dockerfile.vllm-dgx
HackWeasel 310491a557 GT AI OS Community v2.0.33 - Add NVIDIA NIM and Nemotron agents
- Updated python_coding_microproject.csv to use NVIDIA NIM Kimi K2
- Updated kali_linux_shell_simulator.csv to use NVIDIA NIM Kimi K2
  - Made more general-purpose (flexible targets, expanded tools)
- Added nemotron-mini-agent.csv for fast local inference via Ollama
- Added nemotron-agent.csv for advanced reasoning via Ollama
- Added wiki page: Projects for NVIDIA NIMs and Nemotron
2025-12-12 17:47:14 -05:00

73 lines
2.0 KiB
Docker

FROM python:3.11-slim
# Install system dependencies for DGX Grace ARM with optimized libraries
# Note: Removed libatlas-base-dev as it's not available in Debian Trixie ARM64
RUN apt-get update && apt-get install -y \
gcc \
g++ \
curl \
libblas-dev \
liblapack-dev \
libopenblas-dev \
gfortran \
pkg-config \
build-essential \
cmake \
&& rm -rf /var/lib/apt/lists/*
# Install PyTorch CPU-only for ARM with optimized BLAS
RUN pip install --no-cache-dir torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
# Install optimized dependencies for DGX Grace ARM64
RUN pip install --no-cache-dir \
transformers>=4.36.0 \
sentence-transformers \
fastapi \
uvicorn \
numpy \
accelerate \
onnxruntime \
optimum[onnxruntime] \
psutil
# Set comprehensive DGX Grace ARM64 environment variables for maximum performance
ENV OMP_NUM_THREADS=20
ENV MKL_NUM_THREADS=20
ENV BLIS_NUM_THREADS=20
ENV OPENBLAS_NUM_THREADS=20
ENV VECLIB_MAXIMUM_THREADS=20
ENV PYTORCH_NUM_THREADS=20
ENV PYTORCH_ENABLE_MPS_FALLBACK=1
ENV PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0
ENV CUDA_VISIBLE_DEVICES=""
ENV USE_ONNX_RUNTIME=true
ENV MALLOC_ARENA_MAX=8
# DGX Grace architecture optimizations
ENV CFLAGS="-march=armv8.2-a+fp16+rcpc+dotprod -O3 -ffast-math"
ENV CXXFLAGS="-march=armv8.2-a+fp16+rcpc+dotprod -O3 -ffast-math"
# Memory optimization for 128GB system
ENV PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:512
ENV OMP_STACKSIZE=2M
ENV KMP_STACKSIZE=2M
# Platform identification
ENV GT2_PLATFORM=dgx
ENV GT2_ARCHITECTURE=grace-arm
# Create app directory
WORKDIR /app
# Copy the custom OpenAI-compatible BGE-M3 server optimized for DGX
COPY .deployment/docker/embedding_server_dgx.py /app/embedding_server.py
# Expose port
EXPOSE 8000
# Health check with longer timeout for DGX startup
HEALTHCHECK --interval=30s --timeout=60s --start-period=600s --retries=5 \
CMD curl -f http://localhost:8000/health || exit 1
# Run the embedding server
CMD ["python", "embedding_server.py"]