Files
gt-ai-os-community/apps/control-panel-backend/app/models/usage.py
HackWeasel 310491a557 GT AI OS Community v2.0.33 - Add NVIDIA NIM and Nemotron agents
- Updated python_coding_microproject.csv to use NVIDIA NIM Kimi K2
- Updated kali_linux_shell_simulator.csv to use NVIDIA NIM Kimi K2
  - Made more general-purpose (flexible targets, expanded tools)
- Added nemotron-mini-agent.csv for fast local inference via Ollama
- Added nemotron-agent.csv for advanced reasoning via Ollama
- Added wiki page: Projects for NVIDIA NIMs and Nemotron
2025-12-12 17:47:14 -05:00

70 lines
2.9 KiB
Python

"""
Usage tracking database model
"""
from datetime import datetime
from typing import Dict, Any
from sqlalchemy import Column, Integer, String, DateTime, ForeignKey, JSON
from sqlalchemy.dialects.postgresql import JSONB
from sqlalchemy.orm import relationship
from sqlalchemy.sql import func
from app.core.database import Base
class UsageRecord(Base):
"""Usage tracking for billing and monitoring"""
__tablename__ = "usage_records"
id = Column(Integer, primary_key=True, index=True)
tenant_id = Column(Integer, ForeignKey("tenants.id", ondelete="CASCADE"), nullable=False, index=True)
resource_id = Column(Integer, ForeignKey("ai_resources.id", ondelete="CASCADE"), nullable=False, index=True)
user_email = Column(String(255), nullable=False, index=True)
request_type = Column(String(50), nullable=False, index=True) # chat, embedding, image_generation, etc.
tokens_used = Column(Integer, nullable=False, default=0)
cost_cents = Column(Integer, nullable=False, default=0)
request_metadata = Column(JSON, nullable=False, default=dict)
# Timestamp
created_at = Column(DateTime(timezone=True), server_default=func.now(), nullable=False, index=True)
# Relationships
tenant = relationship("Tenant", back_populates="usage_records")
ai_resource = relationship("AIResource", back_populates="usage_records")
def __repr__(self):
return f"<UsageRecord(id={self.id}, tenant_id={self.tenant_id}, tokens={self.tokens_used})>"
def to_dict(self) -> Dict[str, Any]:
"""Convert usage record to dictionary"""
return {
"id": self.id,
"tenant_id": self.tenant_id,
"resource_id": self.resource_id,
"user_email": self.user_email,
"request_type": self.request_type,
"tokens_used": self.tokens_used,
"cost_cents": self.cost_cents,
"request_metadata": self.request_metadata,
"created_at": self.created_at.isoformat() if self.created_at else None
}
@property
def cost_dollars(self) -> float:
"""Get cost in dollars"""
return self.cost_cents / 100.0
@classmethod
def calculate_cost(cls, tokens_used: int, resource_type: str, provider: str) -> int:
"""Calculate cost in cents based on usage"""
# Cost calculation logic (example rates)
if provider == "groq":
if resource_type == "llm":
# Groq LLM pricing: ~$0.0001 per 1K tokens
return max(1, int((tokens_used / 1000) * 0.01 * 100)) # Convert to cents
elif resource_type == "embedding":
# Embedding pricing: ~$0.00002 per 1K tokens
return max(1, int((tokens_used / 1000) * 0.002 * 100)) # Convert to cents
# Default fallback cost
return max(1, int((tokens_used / 1000) * 0.001 * 100)) # 0.1 cents per 1K tokens