Add How to build GT AI OS Agents
260
How-to-build-GT-AI-OS-Agents.md
Normal file
260
How-to-build-GT-AI-OS-Agents.md
Normal file
@@ -0,0 +1,260 @@
|
||||
# Demo Agent Templates
|
||||
|
||||
Pre-built AI agents you can import to get started quickly. Use them as-is or as templates for creating your own.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Available Demo Agents](#available-demo-agents)
|
||||
- [Prerequisites](#prerequisites)
|
||||
- [Downloading the Agent Files](#downloading-the-agent-files)
|
||||
- [Importing Agents](#importing-agents)
|
||||
- [Using the Agents](#using-the-agents)
|
||||
- [Web Research Agent](#web-research-agent)
|
||||
- [System Prompt Reviewer](#system-prompt-reviewer)
|
||||
- [Document Chat Agent](#document-chat-agent)
|
||||
- [Creating Your Own Agents](#creating-your-own-agents)
|
||||
- [Method 1: Create in the App and Export](#method-1-create-in-the-app-and-export)
|
||||
- [Method 2: Edit a Demo Agent CSV](#method-2-edit-a-demo-agent-csv)
|
||||
- [CSV Format Reference](#csv-format-reference)
|
||||
- [Changing Models](#changing-models)
|
||||
|
||||
---
|
||||
|
||||
## Available Demo Agents
|
||||
|
||||
| Agent | Description | Model | Provider |
|
||||
|-------|-------------|-------|----------|
|
||||
| **Web Research Agent** | Searches the web and provides well-sourced answers with citations | `groq/compound` | Groq |
|
||||
| **System Prompt Reviewer** | Analyzes and improves system prompts for AI agents | `moonshotai/kimi-k2-instruct-0905` | Groq |
|
||||
| **Document Chat Agent** | Chat with your uploaded documents using RAG | `nvidia/llama-3.3-nemotron-super-49b-v1` | NVIDIA |
|
||||
|
||||
---
|
||||
|
||||
## Prerequisites
|
||||
|
||||
Before importing these agents, you need API keys configured for the model providers.
|
||||
|
||||
### Required API Keys
|
||||
|
||||
| Agent | Required API Key |
|
||||
|-------|------------------|
|
||||
| Web Research Agent | Groq API Key |
|
||||
| System Prompt Reviewer | Groq API Key |
|
||||
| Document Chat Agent | NVIDIA API Key |
|
||||
|
||||
### Setting Up API Keys
|
||||
|
||||
Follow **Step 6** in the [Control Panel Guide](Control-Panel-Guide#step-6-add-your-external-ai-inference-provider-api-key) to add your API keys:
|
||||
|
||||
- **Groq API Key:** Required for Web Research Agent and System Prompt Reviewer
|
||||
- **NVIDIA API Key:** Required for Document Chat Agent
|
||||
|
||||
After adding API keys, verify models are available by following **Step 7** in the [Control Panel Guide](Control-Panel-Guide#step-7-verify-models-are-available).
|
||||
|
||||
---
|
||||
|
||||
## Downloading the Agent Files
|
||||
|
||||
Download the CSV files for the agents you want to import:
|
||||
|
||||
| Agent | Download | Required API Key |
|
||||
|-------|----------|------------------|
|
||||
| Web Research Agent | [Download CSV](https://github.com/GT-Edge-AI-Internal/gt-ai-os-community/releases/download/v2.0.33/internet-search-agent.csv) | Groq |
|
||||
| System Prompt Reviewer | [Download CSV](https://github.com/GT-Edge-AI-Internal/gt-ai-os-community/releases/download/v2.0.33/system-prompt-reviewer.csv) | Groq |
|
||||
| Document Chat Agent | [Download CSV](https://github.com/GT-Edge-AI-Internal/gt-ai-os-community/releases/download/v2.0.33/document-chat-agent.csv) | NVIDIA |
|
||||
|
||||
Click the download link and the file will download automatically.
|
||||
|
||||
---
|
||||
|
||||
## Importing Agents
|
||||
|
||||
Follow the [Importing Agent Configuration](Tenant-App-Guide#importing-agent-configuration) steps in the Tenant App Guide:
|
||||
|
||||
1. Open the Tenant App: http://localhost:3002
|
||||
2. Log in with your credentials
|
||||
3. Click **Agents** in the left sidebar
|
||||
4. Click the **Agent Configuration** tab
|
||||
5. Click the **Import** button
|
||||
6. Drag and drop the CSV file or click **Choose Files**
|
||||
7. Click **Import Agent**
|
||||
|
||||
The agent will appear in your agents list, ready to use.
|
||||
|
||||
**Tip:** You can import multiple CSV files at once.
|
||||
|
||||
---
|
||||
|
||||
## Using the Agents
|
||||
|
||||
### Web Research Agent
|
||||
|
||||
**What it does:** Searches the internet and provides comprehensive answers with properly formatted citations and source links.
|
||||
|
||||
**How to use:**
|
||||
1. Go to **Agents** → **Favorite Agents** or **Agent Configuration**
|
||||
2. Click on the Web Research Agent
|
||||
3. Ask any question you'd research online
|
||||
4. The agent will search the web and respond with:
|
||||
- Confidence level based on source quality
|
||||
- Inline citations [1], [2], etc.
|
||||
- Full source list with clickable links
|
||||
|
||||
**Example prompts:**
|
||||
- "What are the latest developments in AI?"
|
||||
- "Current US economic indicators"
|
||||
- "Recent climate change research findings"
|
||||
|
||||
> **Important:** This agent requires the `groq/compound` model because it has web search capability. Other models cannot search the internet.
|
||||
|
||||
---
|
||||
|
||||
### System Prompt Reviewer
|
||||
|
||||
**What it does:** Analyzes system prompts for AI agents and provides actionable feedback to improve them.
|
||||
|
||||
**How to use:**
|
||||
1. Select the System Prompt Reviewer from your agents list
|
||||
2. Paste a system prompt you want to improve
|
||||
3. The agent will analyze it for clarity, structure, specificity, and guardrails
|
||||
4. You'll receive an improved version with explanations
|
||||
|
||||
**Example prompts:**
|
||||
- "Review this prompt: [paste your prompt]"
|
||||
- "How can I make my agent more focused?"
|
||||
- "What makes a good system prompt?"
|
||||
|
||||
---
|
||||
|
||||
### Document Chat Agent
|
||||
|
||||
**What it does:** Answers questions based on documents you've uploaded to datasets using RAG (Retrieval-Augmented Generation).
|
||||
|
||||
**Setup required:** Before using this agent, you need to create a dataset and connect it:
|
||||
|
||||
1. Create a dataset and upload documents by following [Creating a Dataset](Tenant-App-Guide#creating-a-dataset) and [Uploading Documents](Tenant-App-Guide#uploading-documents-to-a-dataset)
|
||||
2. Connect the dataset to the agent by following [Connecting a Dataset to an Agent](Tenant-App-Guide#connecting-a-dataset-to-an-agent)
|
||||
|
||||
**How to use:**
|
||||
1. Select the Document Chat Agent
|
||||
2. Ask questions about your uploaded documents
|
||||
3. The agent will search your documents and provide answers based on the content
|
||||
|
||||
**Example prompts:**
|
||||
- "Summarize the main points"
|
||||
- "What does it say about [topic]?"
|
||||
- "Find all mentions of [keyword]"
|
||||
|
||||
---
|
||||
|
||||
## Creating Your Own Agents
|
||||
|
||||
You can create custom agents in two ways: through the app interface or by editing CSV files.
|
||||
|
||||
### Method 1: Create in the App and Export
|
||||
|
||||
The easiest way to create agents is through the Tenant App:
|
||||
|
||||
1. Follow [Creating Your First Agent](Tenant-App-Guide#creating-your-first-agent) to build your agent
|
||||
2. Test and refine your agent by chatting with it
|
||||
3. When satisfied, export it by following [Exporting Agent Configuration](Tenant-App-Guide#exporting-agent-configuration)
|
||||
4. Share the exported file with colleagues or use it as a backup
|
||||
|
||||
This method lets you use the visual interface to configure all settings, then export for sharing or backup.
|
||||
|
||||
### Method 2: Edit a Demo Agent CSV
|
||||
|
||||
Use a demo agent as a starting template:
|
||||
|
||||
1. Download one of the demo agent CSV files above
|
||||
2. Open it in a spreadsheet app (Excel, Google Sheets) or text editor
|
||||
3. Modify the fields:
|
||||
- `name` - Give it a unique name
|
||||
- `description` - Update the description
|
||||
- `model` - Change the model if needed (see [Changing Models](#changing-models))
|
||||
- `prompt_template` - Customize the system prompt
|
||||
- `easy_prompts` - Add your own suggested prompts (pipe-separated)
|
||||
4. Save as CSV
|
||||
5. Import the modified file
|
||||
|
||||
### CSV Format Reference
|
||||
|
||||
Agent CSV files use this format:
|
||||
|
||||
| Column | Required | Description |
|
||||
|--------|----------|-------------|
|
||||
| `name` | Yes | Agent name (max 255 characters) |
|
||||
| `model` | Yes | Model ID (e.g., `groq/compound`, `nvidia/llama-3.3-nemotron-super-49b-v1`) |
|
||||
| `description` | No | Brief description of the agent |
|
||||
| `category` | No | Category slug (e.g., `research`, `development`, `productivity`) |
|
||||
| `temperature` | No | Creativity level 0.0-2.0 (default: 0.7) |
|
||||
| `max_tokens` | No | Maximum response length (default: 4096) |
|
||||
| `prompt_template` | No | System prompt instructions |
|
||||
| `dataset_connection` | No | `all`, `none`, or `selected` (default: `all`) |
|
||||
| `selected_dataset_ids` | No | Pipe-separated UUIDs if using `selected` |
|
||||
| `disclaimer` | No | Warning text shown to users (max 500 characters) |
|
||||
| `easy_prompts` | No | Suggested prompts, pipe-separated (max 10) |
|
||||
| `visibility` | No | `individual`, `team`, or `organization` |
|
||||
| `tags` | No | Comma-separated tags |
|
||||
|
||||
**Format notes:**
|
||||
- Use commas to separate columns
|
||||
- Wrap values containing commas or newlines in double quotes
|
||||
- Use pipe `|` to separate multiple values in array fields (e.g., `easy_prompts`)
|
||||
- Escape double quotes inside values by doubling them: `""`
|
||||
|
||||
### Changing Models
|
||||
|
||||
You can change which model an agent uses by editing the `model` column in the CSV.
|
||||
|
||||
**Groq models** (require Groq API key):
|
||||
- `groq/compound` - **Web search capability** ⚠️
|
||||
- `groq/compound-mini` - Smaller web search model ⚠️
|
||||
- `llama-3.3-70b-versatile` - General purpose
|
||||
- `llama-3.1-8b-instant` - Fast, lightweight
|
||||
- `moonshotai/kimi-k2-instruct-0905` - Advanced reasoning
|
||||
|
||||
**NVIDIA models** (require NVIDIA API key):
|
||||
- `nvidia/llama-3.3-nemotron-super-49b-v1` - Balanced performance
|
||||
- `nvidia/llama-3.1-nemotron-ultra-253b-v1` - Maximum capability
|
||||
- `meta/llama-3.3-70b-instruct` - General purpose
|
||||
- `deepseek-ai/deepseek-r1` - Reasoning specialist
|
||||
|
||||
⚠️ **Web Search:** Only `groq/compound` and `groq/compound-mini` models have web search capability. For agents that need to search the internet, you must use one of these models.
|
||||
|
||||
**To see all available models:**
|
||||
1. Open Control Panel: http://localhost:3001
|
||||
2. Go to **Models**
|
||||
3. The **Model ID** column shows the exact values to use in your CSV
|
||||
|
||||
For adding new models, see [Adding More Models](Control-Panel-Guide#adding-more-models) in the Control Panel Guide.
|
||||
|
||||
---
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### "Model not found" error when importing
|
||||
|
||||
The model specified in the CSV isn't available. Either:
|
||||
- Add the required API key (see [Prerequisites](#prerequisites))
|
||||
- Change the `model` column to a model you have access to
|
||||
|
||||
### Agent doesn't respond
|
||||
|
||||
- Check that the model's API key is configured in [Control Panel → API Keys](Control-Panel-Guide#step-6-add-your-external-ai-inference-provider-api-key)
|
||||
- Verify the API key is valid and not expired
|
||||
- Check the model is assigned to your tenant in Control Panel → Tenant Access
|
||||
|
||||
### Web search not working
|
||||
|
||||
Web search only works with Groq Compound models. Verify:
|
||||
- You have a Groq API key configured
|
||||
- The agent is using `groq/compound` or `groq/compound-mini`
|
||||
|
||||
### Document Chat Agent doesn't find my documents
|
||||
|
||||
- Create and upload documents to a dataset first (see [Tenant App Guide](Tenant-App-Guide#creating-a-dataset))
|
||||
- Connect the dataset to the agent (see [Tenant App Guide](Tenant-App-Guide#connecting-a-dataset-to-an-agent))
|
||||
- Verify document processing status is "Completed"
|
||||
|
||||
For more help, see the [Troubleshooting](Troubleshooting) guide.
|
||||
Reference in New Issue
Block a user