Files
gt-ai-os-community/.deployment/docker/embedding_server.py
HackWeasel 310491a557 GT AI OS Community v2.0.33 - Add NVIDIA NIM and Nemotron agents
- Updated python_coding_microproject.csv to use NVIDIA NIM Kimi K2
- Updated kali_linux_shell_simulator.csv to use NVIDIA NIM Kimi K2
  - Made more general-purpose (flexible targets, expanded tools)
- Added nemotron-mini-agent.csv for fast local inference via Ollama
- Added nemotron-agent.csv for advanced reasoning via Ollama
- Added wiki page: Projects for NVIDIA NIMs and Nemotron
2025-12-12 17:47:14 -05:00

382 lines
14 KiB
Python

#!/usr/bin/env python3
"""
OpenAI-Compatible BGE-M3 Embedding Server for GT 2.0
Provides real BGE-M3 embeddings via OpenAI-compatible API - NO FALLBACKS
"""
import asyncio
import logging
import time
import uvicorn
from datetime import datetime
from typing import List, Dict, Any, Optional
from pydantic import BaseModel, Field
from fastapi import FastAPI, HTTPException
from contextlib import asynccontextmanager
# Setup logging first
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# BGE-M3 Model with ONNX Runtime optimization
from sentence_transformers import SentenceTransformer
import torch
import os
import numpy as np
# Limit VRAM usage if GPU is available (BGE-M3 needs ~2.5GB)
if torch.cuda.is_available():
memory_fraction = float(os.environ.get('CUDA_MEMORY_FRACTION', '0.25'))
torch.cuda.set_per_process_memory_fraction(memory_fraction)
logger.info(f"CUDA memory limited to {memory_fraction*100:.0f}% of available VRAM")
# ONNX Runtime imports with direct session support
try:
import onnxruntime as ort
from transformers import AutoTokenizer
ONNX_AVAILABLE = True
logger.info(f"ONNX Runtime available (providers: {ort.get_available_providers()})")
except ImportError as e:
ONNX_AVAILABLE = False
logger.warning(f"ONNX Runtime not available, falling back to SentenceTransformers: {e}")
# Global model instances
model = None
tokenizer = None
onnx_session = None
use_onnx = False
model_mode = "unknown"
def mean_pooling(token_embeddings: np.ndarray, attention_mask: np.ndarray) -> np.ndarray:
"""
Perform mean pooling on token embeddings using attention mask.
Args:
token_embeddings: Token-level embeddings [batch_size, seq_len, hidden_dim]
attention_mask: Attention mask [batch_size, seq_len]
Returns:
Pooled embeddings [batch_size, hidden_dim]
"""
# Expand attention mask to match embeddings dimensions
attention_mask_expanded = np.expand_dims(attention_mask, -1)
# Sum embeddings where attention mask is 1
sum_embeddings = np.sum(token_embeddings * attention_mask_expanded, axis=1)
# Sum attention mask to get actual sequence lengths
sum_mask = np.sum(attention_mask_expanded, axis=1)
# Divide to get mean (avoid division by zero)
mean_embeddings = sum_embeddings / np.maximum(sum_mask, 1e-9)
return mean_embeddings
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Load BGE-M3 model on startup with ONNX optimization"""
global model, tokenizer, onnx_session, use_onnx, model_mode
logger.info("Loading BGE-M3 model with ARM64 optimization...")
# Check if ONNX Runtime should be used
use_onnx_env = os.getenv('USE_ONNX_RUNTIME', 'true').lower() == 'true'
try:
if ONNX_AVAILABLE and use_onnx_env:
# Try ONNX Runtime with direct session for maximum ARM64 performance
logger.info("Attempting to load BGE-M3 with direct ONNX Runtime session...")
try:
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-m3')
# Check for cached ONNX model
cache_dir = os.path.expanduser('~/.cache/huggingface/hub')
model_id = 'models--BAAI--bge-m3'
# Find ONNX model in cache
import glob
onnx_pattern = f'{cache_dir}/{model_id}/snapshots/*/onnx/model.onnx'
onnx_files = glob.glob(onnx_pattern)
if onnx_files:
onnx_path = onnx_files[0]
logger.info(f"Found cached ONNX model at: {onnx_path}")
# Configure ONNX session options to suppress ARM64 warnings
sess_options = ort.SessionOptions()
sess_options.log_severity_level = 3 # 3=ERROR (suppresses warnings)
# Create ONNX session with GPU auto-detection (falls back to CPU)
onnx_session = ort.InferenceSession(
onnx_path,
sess_options=sess_options,
providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)
use_onnx = True
model_mode = "ONNX Runtime (Direct Session)"
logger.info("✅ BGE-M3 model loaded with direct ONNX Runtime session")
# Log ONNX model outputs for debugging
logger.info("ONNX model outputs:")
for output in onnx_session.get_outputs():
logger.info(f" - {output.name}: {output.shape}")
else:
logger.warning("No cached ONNX model found, need to export first...")
logger.info("Attempting ONNX export via optimum...")
# Try to export ONNX model using optimum
from optimum.onnxruntime import ORTModelForFeatureExtraction
# This will cache the ONNX model for future use
temp_model = ORTModelForFeatureExtraction.from_pretrained(
'BAAI/bge-m3',
export=False,
provider="CPUExecutionProvider"
)
del temp_model
# Now find the newly exported model
onnx_files = glob.glob(onnx_pattern)
if onnx_files:
onnx_path = onnx_files[0]
logger.info(f"ONNX model exported to: {onnx_path}")
# Load with direct session (GPU auto-detection)
sess_options = ort.SessionOptions()
sess_options.log_severity_level = 3
onnx_session = ort.InferenceSession(
onnx_path,
sess_options=sess_options,
providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)
use_onnx = True
model_mode = "ONNX Runtime (Direct Session - Exported)"
logger.info("✅ BGE-M3 model exported and loaded with direct ONNX Runtime session")
else:
raise FileNotFoundError("ONNX export completed but model file not found")
except Exception as onnx_error:
logger.warning(f"ONNX Runtime setup failed: {onnx_error}")
logger.warning(f"Error type: {type(onnx_error).__name__}")
logger.info("Falling back to SentenceTransformers...")
raise onnx_error
else:
logger.info("ONNX Runtime disabled or unavailable, using SentenceTransformers...")
raise ImportError("ONNX disabled")
except Exception:
# Fallback to SentenceTransformers with GPU auto-detection
device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info(f"Loading BGE-M3 with SentenceTransformers (fallback mode) on {device}...")
model = SentenceTransformer(
'BAAI/bge-m3',
device=device,
trust_remote_code=True
)
use_onnx = False
model_mode = f"SentenceTransformers ({device.upper()})"
logger.info(f"✅ BGE-M3 model loaded with SentenceTransformers on {device}")
logger.info(f"Model mode: {model_mode}")
logger.info(f"PyTorch threads: {torch.get_num_threads()}")
logger.info(f"OMP threads: {os.getenv('OMP_NUM_THREADS', 'not set')}")
logger.info(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
yield
# Cleanup
if model:
del model
if tokenizer:
del tokenizer
if onnx_session:
del onnx_session
torch.cuda.empty_cache() if torch.cuda.is_available() else None
app = FastAPI(
title="BGE-M3 Embedding Service",
description="OpenAI-compatible BGE-M3 embedding API for GT 2.0",
version="1.0.0",
lifespan=lifespan
)
# OpenAI-compatible request models
class EmbeddingRequest(BaseModel):
input: List[str] = Field(..., description="Input texts to embed")
model: str = Field(default="BAAI/bge-m3", description="Model name")
encoding_format: str = Field(default="float", description="Encoding format")
dimensions: Optional[int] = Field(None, description="Number of dimensions")
user: Optional[str] = Field(None, description="User identifier")
class EmbeddingData(BaseModel):
object: str = "embedding"
embedding: List[float]
index: int
class EmbeddingUsage(BaseModel):
prompt_tokens: int
total_tokens: int
class EmbeddingResponse(BaseModel):
object: str = "list"
data: List[EmbeddingData]
model: str
usage: EmbeddingUsage
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
async def create_embeddings(request: EmbeddingRequest):
"""Generate embeddings using BGE-M3 model"""
if not model and not onnx_session:
raise HTTPException(status_code=500, detail="BGE-M3 model not loaded")
if not request.input:
raise HTTPException(status_code=400, detail="No input texts provided")
start_time = time.time()
try:
logger.info(f"Generating embeddings for {len(request.input)} texts using {model_mode}")
# Generate embeddings with mode-specific logic
if use_onnx and onnx_session:
# Direct ONNX Runtime path for maximum performance
batch_size = min(len(request.input), 64)
embeddings = []
for i in range(0, len(request.input), batch_size):
batch_texts = request.input[i:i + batch_size]
# Tokenize
inputs = tokenizer(
batch_texts,
padding=True,
truncation=True,
return_tensors="np",
max_length=512
)
# Run ONNX inference
# BGE-M3 ONNX model outputs: [token_embeddings, sentence_embedding]
outputs = onnx_session.run(
None, # Get all outputs
{
'input_ids': inputs['input_ids'].astype(np.int64),
'attention_mask': inputs['attention_mask'].astype(np.int64)
}
)
# Get token embeddings (first output)
token_embeddings = outputs[0]
# Mean pooling with attention mask
batch_embeddings = mean_pooling(token_embeddings, inputs['attention_mask'])
# Normalize embeddings
norms = np.linalg.norm(batch_embeddings, axis=1, keepdims=True)
batch_embeddings = batch_embeddings / np.maximum(norms, 1e-9)
embeddings.extend(batch_embeddings)
embeddings = np.array(embeddings)
else:
# SentenceTransformers fallback path
embeddings = model.encode(
request.input,
batch_size=min(len(request.input), 64),
show_progress_bar=False,
convert_to_tensor=False,
normalize_embeddings=True
)
# Convert to list format
if hasattr(embeddings, 'tolist'):
embeddings = embeddings.tolist()
elif isinstance(embeddings, list) and len(embeddings) > 0:
if hasattr(embeddings[0], 'tolist'):
embeddings = [emb.tolist() for emb in embeddings]
# Create response in OpenAI format
embedding_data = [
EmbeddingData(
embedding=embedding,
index=i
)
for i, embedding in enumerate(embeddings)
]
# Calculate token usage (rough estimation)
total_tokens = sum(len(text.split()) for text in request.input)
processing_time_ms = int((time.time() - start_time) * 1000)
logger.info(f"Generated {len(embeddings)} embeddings in {processing_time_ms}ms")
return EmbeddingResponse(
data=embedding_data,
model=request.model,
usage=EmbeddingUsage(
prompt_tokens=total_tokens,
total_tokens=total_tokens
)
)
except Exception as e:
logger.error(f"Error generating embeddings: {e}")
logger.exception("Full traceback:")
raise HTTPException(status_code=500, detail=f"Embedding generation failed: {str(e)}")
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy" if (model or onnx_session) else "unhealthy",
"model": "BAAI/bge-m3",
"service": "bge-m3-embeddings",
"mode": model_mode,
"onnx_enabled": use_onnx,
"gpu_available": torch.cuda.is_available(),
"gpu_name": torch.cuda.get_device_name(0) if torch.cuda.is_available() else None,
"pytorch_threads": torch.get_num_threads(),
"timestamp": datetime.utcnow().isoformat()
}
@app.get("/v1/models")
async def list_models():
"""List available models (OpenAI-compatible)"""
return {
"object": "list",
"data": [
{
"id": "BAAI/bge-m3",
"object": "model",
"created": int(time.time()),
"owned_by": "gt2"
}
]
}
@app.get("/")
async def root():
"""Root endpoint"""
return {
"service": "BGE-M3 Embedding Service",
"model": "BAAI/bge-m3",
"version": "1.0.0",
"api": "OpenAI-compatible",
"status": "ready" if (model or onnx_session) else "loading"
}
if __name__ == "__main__":
uvicorn.run(
"embedding_server:app",
host="0.0.0.0",
port=8000,
log_level="info"
)